Serveur d'exploration sur le peuplier

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Increasing atmospheric CO2 reduces metabolic and physiological differences between isoprene- and non-isoprene-emitting poplars.

Identifieur interne : 002631 ( Main/Exploration ); précédent : 002630; suivant : 002632

Increasing atmospheric CO2 reduces metabolic and physiological differences between isoprene- and non-isoprene-emitting poplars.

Auteurs : Danielle A. Way ; Andrea Ghirardo ; Basem Kanawati ; Jürgen Esperschütz ; Russell K. Monson ; Robert B. Jackson ; Philippe Schmitt-Kopplin ; Jörg-Peter Schnitzler

Source :

RBID : pubmed:23822651

Descripteurs français

English descriptors

Abstract

Isoprene, a volatile organic compound produced by some plant species, enhances abiotic stress tolerance under current atmospheric CO2 concentrations, but its biosynthesis is negatively correlated with CO2 concentrations. We hypothesized that losing the capacity to produce isoprene would require stronger up-regulation of other stress tolerance mechanisms at low CO2 than at higher CO2 concentrations. We compared metabolite profiles and physiological performance in poplars (Populus × canescens) with either wild-type or RNAi-suppressed isoprene emission capacity grown at pre-industrial low, current atmospheric, and future high CO2 concentrations (190, 390 and 590 ppm CO2 , respectively). Suppression of isoprene biosynthesis led to significant rearrangement of the leaf metabolome, increasing stress tolerance responses such as xanthophyll cycle pigment de-epoxidation and antioxidant levels, as well as altering lipid, carbon and nitrogen metabolism. Metabolic and physiological differences between isoprene-emitting and suppressed lines diminished as growth CO2 concentrations rose. The CO2 dependence of our results indicates that the effects of isoprene biosynthesis are strongest at pre-industrial CO2 concentrations. Rising CO2 may reduce the beneficial effects of biogenic isoprene emission, with implications for species competition. This has potential consequences for future climate warming, as isoprene emitted from vegetation has strong effects on global atmospheric chemistry.

DOI: 10.1111/nph.12391
PubMed: 23822651


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Increasing atmospheric CO2 reduces metabolic and physiological differences between isoprene- and non-isoprene-emitting poplars.</title>
<author>
<name sortKey="Way, Danielle A" sort="Way, Danielle A" uniqKey="Way D" first="Danielle A" last="Way">Danielle A. Way</name>
<affiliation>
<nlm:affiliation>Nicholas School of the Environment and Department of Biology, Duke University, Durham, NC, 27708, USA; Department of Biology, Western University, London, ON, Canada, N6A 5B7.</nlm:affiliation>
<wicri:noCountry code="subField">N6A 5B7</wicri:noCountry>
</affiliation>
</author>
<author>
<name sortKey="Ghirardo, Andrea" sort="Ghirardo, Andrea" uniqKey="Ghirardo A" first="Andrea" last="Ghirardo">Andrea Ghirardo</name>
</author>
<author>
<name sortKey="Kanawati, Basem" sort="Kanawati, Basem" uniqKey="Kanawati B" first="Basem" last="Kanawati">Basem Kanawati</name>
</author>
<author>
<name sortKey="Esperschutz, Jurgen" sort="Esperschutz, Jurgen" uniqKey="Esperschutz J" first="Jürgen" last="Esperschütz">Jürgen Esperschütz</name>
</author>
<author>
<name sortKey="Monson, Russell K" sort="Monson, Russell K" uniqKey="Monson R" first="Russell K" last="Monson">Russell K. Monson</name>
</author>
<author>
<name sortKey="Jackson, Robert B" sort="Jackson, Robert B" uniqKey="Jackson R" first="Robert B" last="Jackson">Robert B. Jackson</name>
</author>
<author>
<name sortKey="Schmitt Kopplin, Philippe" sort="Schmitt Kopplin, Philippe" uniqKey="Schmitt Kopplin P" first="Philippe" last="Schmitt-Kopplin">Philippe Schmitt-Kopplin</name>
</author>
<author>
<name sortKey="Schnitzler, Jorg Peter" sort="Schnitzler, Jorg Peter" uniqKey="Schnitzler J" first="Jörg-Peter" last="Schnitzler">Jörg-Peter Schnitzler</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2013">2013</date>
<idno type="RBID">pubmed:23822651</idno>
<idno type="pmid">23822651</idno>
<idno type="doi">10.1111/nph.12391</idno>
<idno type="wicri:Area/Main/Corpus">002546</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">002546</idno>
<idno type="wicri:Area/Main/Curation">002546</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">002546</idno>
<idno type="wicri:Area/Main/Exploration">002546</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Increasing atmospheric CO2 reduces metabolic and physiological differences between isoprene- and non-isoprene-emitting poplars.</title>
<author>
<name sortKey="Way, Danielle A" sort="Way, Danielle A" uniqKey="Way D" first="Danielle A" last="Way">Danielle A. Way</name>
<affiliation>
<nlm:affiliation>Nicholas School of the Environment and Department of Biology, Duke University, Durham, NC, 27708, USA; Department of Biology, Western University, London, ON, Canada, N6A 5B7.</nlm:affiliation>
<wicri:noCountry code="subField">N6A 5B7</wicri:noCountry>
</affiliation>
</author>
<author>
<name sortKey="Ghirardo, Andrea" sort="Ghirardo, Andrea" uniqKey="Ghirardo A" first="Andrea" last="Ghirardo">Andrea Ghirardo</name>
</author>
<author>
<name sortKey="Kanawati, Basem" sort="Kanawati, Basem" uniqKey="Kanawati B" first="Basem" last="Kanawati">Basem Kanawati</name>
</author>
<author>
<name sortKey="Esperschutz, Jurgen" sort="Esperschutz, Jurgen" uniqKey="Esperschutz J" first="Jürgen" last="Esperschütz">Jürgen Esperschütz</name>
</author>
<author>
<name sortKey="Monson, Russell K" sort="Monson, Russell K" uniqKey="Monson R" first="Russell K" last="Monson">Russell K. Monson</name>
</author>
<author>
<name sortKey="Jackson, Robert B" sort="Jackson, Robert B" uniqKey="Jackson R" first="Robert B" last="Jackson">Robert B. Jackson</name>
</author>
<author>
<name sortKey="Schmitt Kopplin, Philippe" sort="Schmitt Kopplin, Philippe" uniqKey="Schmitt Kopplin P" first="Philippe" last="Schmitt-Kopplin">Philippe Schmitt-Kopplin</name>
</author>
<author>
<name sortKey="Schnitzler, Jorg Peter" sort="Schnitzler, Jorg Peter" uniqKey="Schnitzler J" first="Jörg-Peter" last="Schnitzler">Jörg-Peter Schnitzler</name>
</author>
</analytic>
<series>
<title level="j">The New phytologist</title>
<idno type="eISSN">1469-8137</idno>
<imprint>
<date when="2013" type="published">2013</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Butadienes (metabolism)</term>
<term>Carbon Dioxide (pharmacology)</term>
<term>Fatty Acids (analysis)</term>
<term>Gene Expression Regulation, Plant (MeSH)</term>
<term>Hemiterpenes (metabolism)</term>
<term>Metabolome (MeSH)</term>
<term>Microscopy, Confocal (MeSH)</term>
<term>Pentanes (metabolism)</term>
<term>Phospholipids (analysis)</term>
<term>Photosynthesis (physiology)</term>
<term>Plant Leaves (drug effects)</term>
<term>Plant Leaves (genetics)</term>
<term>Plant Leaves (metabolism)</term>
<term>Plant Leaves (physiology)</term>
<term>Plant Transpiration (physiology)</term>
<term>Populus (drug effects)</term>
<term>Populus (genetics)</term>
<term>Populus (metabolism)</term>
<term>Populus (physiology)</term>
<term>RNA Interference (MeSH)</term>
<term>Species Specificity (MeSH)</term>
<term>Stress, Physiological (MeSH)</term>
<term>Up-Regulation (MeSH)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Acides gras (analyse)</term>
<term>Butadiènes (métabolisme)</term>
<term>Dioxyde de carbone (pharmacologie)</term>
<term>Feuilles de plante (effets des médicaments et des substances chimiques)</term>
<term>Feuilles de plante (génétique)</term>
<term>Feuilles de plante (métabolisme)</term>
<term>Feuilles de plante (physiologie)</term>
<term>Hémiterpènes (métabolisme)</term>
<term>Interférence par ARN (MeSH)</term>
<term>Microscopie confocale (MeSH)</term>
<term>Métabolome (MeSH)</term>
<term>Pentanes (métabolisme)</term>
<term>Phospholipides (analyse)</term>
<term>Photosynthèse (physiologie)</term>
<term>Populus (effets des médicaments et des substances chimiques)</term>
<term>Populus (génétique)</term>
<term>Populus (métabolisme)</term>
<term>Populus (physiologie)</term>
<term>Régulation de l'expression des gènes végétaux (MeSH)</term>
<term>Régulation positive (MeSH)</term>
<term>Spécificité d'espèce (MeSH)</term>
<term>Stress physiologique (MeSH)</term>
<term>Transpiration des plantes (physiologie)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="analysis" xml:lang="en">
<term>Fatty Acids</term>
<term>Phospholipids</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Butadienes</term>
<term>Hemiterpenes</term>
<term>Pentanes</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="pharmacology" xml:lang="en">
<term>Carbon Dioxide</term>
</keywords>
<keywords scheme="MESH" qualifier="analyse" xml:lang="fr">
<term>Acides gras</term>
<term>Phospholipides</term>
</keywords>
<keywords scheme="MESH" qualifier="drug effects" xml:lang="en">
<term>Plant Leaves</term>
<term>Populus</term>
</keywords>
<keywords scheme="MESH" qualifier="effets des médicaments et des substances chimiques" xml:lang="fr">
<term>Feuilles de plante</term>
<term>Populus</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Plant Leaves</term>
<term>Populus</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>Feuilles de plante</term>
<term>Populus</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Plant Leaves</term>
<term>Populus</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Butadiènes</term>
<term>Feuilles de plante</term>
<term>Hémiterpènes</term>
<term>Pentanes</term>
<term>Populus</term>
</keywords>
<keywords scheme="MESH" qualifier="pharmacologie" xml:lang="fr">
<term>Dioxyde de carbone</term>
</keywords>
<keywords scheme="MESH" qualifier="physiologie" xml:lang="fr">
<term>Feuilles de plante</term>
<term>Photosynthèse</term>
<term>Populus</term>
<term>Transpiration des plantes</term>
</keywords>
<keywords scheme="MESH" qualifier="physiology" xml:lang="en">
<term>Photosynthesis</term>
<term>Plant Leaves</term>
<term>Plant Transpiration</term>
<term>Populus</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Gene Expression Regulation, Plant</term>
<term>Metabolome</term>
<term>Microscopy, Confocal</term>
<term>RNA Interference</term>
<term>Species Specificity</term>
<term>Stress, Physiological</term>
<term>Up-Regulation</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Interférence par ARN</term>
<term>Microscopie confocale</term>
<term>Métabolome</term>
<term>Régulation de l'expression des gènes végétaux</term>
<term>Régulation positive</term>
<term>Spécificité d'espèce</term>
<term>Stress physiologique</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Isoprene, a volatile organic compound produced by some plant species, enhances abiotic stress tolerance under current atmospheric CO2 concentrations, but its biosynthesis is negatively correlated with CO2 concentrations. We hypothesized that losing the capacity to produce isoprene would require stronger up-regulation of other stress tolerance mechanisms at low CO2 than at higher CO2 concentrations. We compared metabolite profiles and physiological performance in poplars (Populus × canescens) with either wild-type or RNAi-suppressed isoprene emission capacity grown at pre-industrial low, current atmospheric, and future high CO2 concentrations (190, 390 and 590 ppm CO2 , respectively). Suppression of isoprene biosynthesis led to significant rearrangement of the leaf metabolome, increasing stress tolerance responses such as xanthophyll cycle pigment de-epoxidation and antioxidant levels, as well as altering lipid, carbon and nitrogen metabolism. Metabolic and physiological differences between isoprene-emitting and suppressed lines diminished as growth CO2 concentrations rose. The CO2 dependence of our results indicates that the effects of isoprene biosynthesis are strongest at pre-industrial CO2 concentrations. Rising CO2 may reduce the beneficial effects of biogenic isoprene emission, with implications for species competition. This has potential consequences for future climate warming, as isoprene emitted from vegetation has strong effects on global atmospheric chemistry. </div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">23822651</PMID>
<DateCompleted>
<Year>2014</Year>
<Month>04</Month>
<Day>15</Day>
</DateCompleted>
<DateRevised>
<Year>2020</Year>
<Month>09</Month>
<Day>30</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1469-8137</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>200</Volume>
<Issue>2</Issue>
<PubDate>
<Year>2013</Year>
<Month>Oct</Month>
</PubDate>
</JournalIssue>
<Title>The New phytologist</Title>
<ISOAbbreviation>New Phytol</ISOAbbreviation>
</Journal>
<ArticleTitle>Increasing atmospheric CO2 reduces metabolic and physiological differences between isoprene- and non-isoprene-emitting poplars.</ArticleTitle>
<Pagination>
<MedlinePgn>534-46</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1111/nph.12391</ELocationID>
<Abstract>
<AbstractText>Isoprene, a volatile organic compound produced by some plant species, enhances abiotic stress tolerance under current atmospheric CO2 concentrations, but its biosynthesis is negatively correlated with CO2 concentrations. We hypothesized that losing the capacity to produce isoprene would require stronger up-regulation of other stress tolerance mechanisms at low CO2 than at higher CO2 concentrations. We compared metabolite profiles and physiological performance in poplars (Populus × canescens) with either wild-type or RNAi-suppressed isoprene emission capacity grown at pre-industrial low, current atmospheric, and future high CO2 concentrations (190, 390 and 590 ppm CO2 , respectively). Suppression of isoprene biosynthesis led to significant rearrangement of the leaf metabolome, increasing stress tolerance responses such as xanthophyll cycle pigment de-epoxidation and antioxidant levels, as well as altering lipid, carbon and nitrogen metabolism. Metabolic and physiological differences between isoprene-emitting and suppressed lines diminished as growth CO2 concentrations rose. The CO2 dependence of our results indicates that the effects of isoprene biosynthesis are strongest at pre-industrial CO2 concentrations. Rising CO2 may reduce the beneficial effects of biogenic isoprene emission, with implications for species competition. This has potential consequences for future climate warming, as isoprene emitted from vegetation has strong effects on global atmospheric chemistry. </AbstractText>
<CopyrightInformation>© 2013 The Authors. New Phytologist © 2013 New Phytologist Trust.</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Way</LastName>
<ForeName>Danielle A</ForeName>
<Initials>DA</Initials>
<AffiliationInfo>
<Affiliation>Nicholas School of the Environment and Department of Biology, Duke University, Durham, NC, 27708, USA; Department of Biology, Western University, London, ON, Canada, N6A 5B7.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Ghirardo</LastName>
<ForeName>Andrea</ForeName>
<Initials>A</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Kanawati</LastName>
<ForeName>Basem</ForeName>
<Initials>B</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Esperschütz</LastName>
<ForeName>Jürgen</ForeName>
<Initials>J</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Monson</LastName>
<ForeName>Russell K</ForeName>
<Initials>RK</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Jackson</LastName>
<ForeName>Robert B</ForeName>
<Initials>RB</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Schmitt-Kopplin</LastName>
<ForeName>Philippe</ForeName>
<Initials>P</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Schnitzler</LastName>
<ForeName>Jörg-Peter</ForeName>
<Initials>JP</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
<PublicationType UI="D013486">Research Support, U.S. Gov't, Non-P.H.S.</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2013</Year>
<Month>07</Month>
<Day>04</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>England</Country>
<MedlineTA>New Phytol</MedlineTA>
<NlmUniqueID>9882884</NlmUniqueID>
<ISSNLinking>0028-646X</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D002070">Butadienes</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D005227">Fatty Acids</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D045782">Hemiterpenes</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D010420">Pentanes</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D010743">Phospholipids</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0A62964IBU</RegistryNumber>
<NameOfSubstance UI="C005059">isoprene</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>142M471B3J</RegistryNumber>
<NameOfSubstance UI="D002245">Carbon Dioxide</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D002070" MajorTopicYN="N">Butadienes</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002245" MajorTopicYN="N">Carbon Dioxide</DescriptorName>
<QualifierName UI="Q000494" MajorTopicYN="Y">pharmacology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005227" MajorTopicYN="N">Fatty Acids</DescriptorName>
<QualifierName UI="Q000032" MajorTopicYN="N">analysis</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018506" MajorTopicYN="Y">Gene Expression Regulation, Plant</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D045782" MajorTopicYN="N">Hemiterpenes</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D055442" MajorTopicYN="Y">Metabolome</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018613" MajorTopicYN="N">Microscopy, Confocal</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010420" MajorTopicYN="N">Pentanes</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010743" MajorTopicYN="N">Phospholipids</DescriptorName>
<QualifierName UI="Q000032" MajorTopicYN="N">analysis</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010788" MajorTopicYN="N">Photosynthesis</DescriptorName>
<QualifierName UI="Q000502" MajorTopicYN="N">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018515" MajorTopicYN="N">Plant Leaves</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
<QualifierName UI="Q000502" MajorTopicYN="N">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018526" MajorTopicYN="N">Plant Transpiration</DescriptorName>
<QualifierName UI="Q000502" MajorTopicYN="N">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D032107" MajorTopicYN="N">Populus</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="Y">drug effects</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
<QualifierName UI="Q000502" MajorTopicYN="N">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D034622" MajorTopicYN="N">RNA Interference</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013045" MajorTopicYN="N">Species Specificity</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013312" MajorTopicYN="N">Stress, Physiological</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D015854" MajorTopicYN="N">Up-Regulation</DescriptorName>
</MeshHeading>
</MeshHeadingList>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="N">CO 2</Keyword>
<Keyword MajorTopicYN="N">Fourier transform ion cyclotron resonance mass spectrometer (FT-ICR-MS)</Keyword>
<Keyword MajorTopicYN="N">isoprene</Keyword>
<Keyword MajorTopicYN="N">nontargeted metabolomics</Keyword>
<Keyword MajorTopicYN="N">poplar</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2013</Year>
<Month>03</Month>
<Day>07</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2013</Year>
<Month>05</Month>
<Day>24</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2013</Year>
<Month>7</Month>
<Day>5</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2013</Year>
<Month>7</Month>
<Day>5</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2014</Year>
<Month>4</Month>
<Day>16</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">23822651</ArticleId>
<ArticleId IdType="doi">10.1111/nph.12391</ArticleId>
</ArticleIdList>
</PubmedData>
</pubmed>
<affiliations>
<list></list>
<tree>
<noCountry>
<name sortKey="Esperschutz, Jurgen" sort="Esperschutz, Jurgen" uniqKey="Esperschutz J" first="Jürgen" last="Esperschütz">Jürgen Esperschütz</name>
<name sortKey="Ghirardo, Andrea" sort="Ghirardo, Andrea" uniqKey="Ghirardo A" first="Andrea" last="Ghirardo">Andrea Ghirardo</name>
<name sortKey="Jackson, Robert B" sort="Jackson, Robert B" uniqKey="Jackson R" first="Robert B" last="Jackson">Robert B. Jackson</name>
<name sortKey="Kanawati, Basem" sort="Kanawati, Basem" uniqKey="Kanawati B" first="Basem" last="Kanawati">Basem Kanawati</name>
<name sortKey="Monson, Russell K" sort="Monson, Russell K" uniqKey="Monson R" first="Russell K" last="Monson">Russell K. Monson</name>
<name sortKey="Schmitt Kopplin, Philippe" sort="Schmitt Kopplin, Philippe" uniqKey="Schmitt Kopplin P" first="Philippe" last="Schmitt-Kopplin">Philippe Schmitt-Kopplin</name>
<name sortKey="Schnitzler, Jorg Peter" sort="Schnitzler, Jorg Peter" uniqKey="Schnitzler J" first="Jörg-Peter" last="Schnitzler">Jörg-Peter Schnitzler</name>
<name sortKey="Way, Danielle A" sort="Way, Danielle A" uniqKey="Way D" first="Danielle A" last="Way">Danielle A. Way</name>
</noCountry>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PoplarV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 002631 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 002631 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PoplarV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:23822651
   |texte=   Increasing atmospheric CO2 reduces metabolic and physiological differences between isoprene- and non-isoprene-emitting poplars.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:23822651" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PoplarV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 12:07:19 2020. Site generation: Wed Nov 18 12:16:31 2020